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ABSTRACT
A new procedure for smoothing a gamma-ray burst (GRB) light curve and calculating its
variability is presented. Applying the procedure to a sample of 25 long GRBs, we have obtained
a very tight correlation between the variability and the peak luminosity. The only significant
outlier in the sample is GRB 030329. With this outlier excluded, the data scatter is reduced by
a factor of ∼3 compared to that of Guidorzi et al., measured by the deviation of fit. Possible
causes for the outlier are discussed.
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1 I N T RO D U C T I O N

Despite exciting progress in observations, the nature of gamma-ray
bursts (GRBs) remains a big puzzle [see van Paradijs, Kouveliotou
& Wijers (2000) and Piran (2004) for recent reviews]. In such a sit-
uation, it is extremely important to identify some good correlations
between the apparent (easy to measure or calculate) and intrinsic
properties of GRBs. Several such correlations have indeed been
found. For example, an anticorrelation between the peak luminos-
ity and spectral lag of GRBs has been found by Norris, Marani
& Bonnell (2000), and a correlation between the peak luminosity
and the variability of GRB light curves has been found by Feni-
more & Ramirez-Ruiz (2000, hereafter FR00) and Reichart et al.
(2001, hereafter R01). A correlation between the total isotropic en-
ergy and the peak energy of the spectrum (Amati et al. 2002), or
the collimation-corrected total energy and the peak energy of the
spectrum (Ghirlanda, Ghisellini & Lazzati 2004), has also been dis-
covered.

Recently, Guidorzi et al. (2005, hereafter G05) tested the correla-
tion between the variability and peak luminosity of GRBs, using an
expanded sample of 32 GRBs with measured redshifts. The defini-
tions of the variability and the peak luminosity are the same, but the
size of the GRB sample of G05 is about three times bigger than that
of R01. The existence of a correlation was confirmed, but the scat-
ter in the correlation is significantly larger than that found by R01
(see, however, Reichart & Nysewander 2005). Although the issue is
in debate (Guidorzi 2005; Reichart 2005; Reichart & Nysewander
2005), it is clear that with the definition of variability given by R01,
the correlation between the variability and the peak luminosity is
not tight.

In this paper, we present a new definition for the variability of
GRB light curves. We then apply it to a sample of 25 long-duration
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GRBs with measured redshifts, whose data are publicly available.
We show that, with the new definition of the variability, the corre-
lation between the variability and the peak luminosity of GRBs is
significantly improved: the data scatter is considerably reduced.

2 N E W D E F I N I T I O N O F T H E VA R I A B I L I T Y

To measure the variability of a light curve, first we must define a
reference light curve. The reference light curve should be sufficiently
smoother than the original raw light curve. Since an ultimate model
for GRBs does not exist yet, there is no first principle to guide us
in choosing a reference light curve. What people usually do is to
smooth the raw light curve with a linear ‘boxcar’ filter (or moving
window), which smoothes the light curve with linear average (FR00;
R01).

Here we use a Savitzky–Golay filter (Press et al. 2002) to smooth
a light curve. The Savitzky–Golay filter is a more general and more
powerful approach for smoothing noisy data than the linear boxcar
filter. The basic idea of Savitzky–Golay filtering is to approximate
the underlying function (i.e. the reference light curve) within the
moving window by a polynomial of higher order. An advantage
of the Savitzky–Golay filter to the linear filter is that the former
preserves high moments while the latter does not.

A Savitzky–Golay filter is specified by three numbers: the order
of the polynomial (m), the number of points used to the left of a data
point (nL) and the number of points used to the right of a data point
(nR). To apply the Savitzky–Golay filter, the data must be binned
with constant spacing. For more details see Press et al. (2002).

We use a third-order Savitzky–Golay filter. That is, we set
m = 3. The width of the filter, that is, nP ≡ nL + nR + 1, is deter-
mined with the approach of R01: nP is set to be equal to the number
of data points corresponding to a time-scale Tf − the time spanned
by the brightest 100f per cent of the total counts above the back-
ground (for details see R01). It turns out that f = 0.5 most suits our
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purpose (rather than the f = 0.45 used by R01 and G05; see Section
5). So, throughout this paper we use nP determined by T 0.5.

We then define nL = int[(nP − 1)/2], and nR = nP − nL − 1. If
nP is odd, we have nR = nL, that is, the filter is symmetric about
the point to smooth. If nP is even, we have nR = nL + 1, the filter
is asymmetric. In this case, we smooth the light curve twice: first
we use the nL and nR defined above, then we switch nL and nR. The
results are then averaged.

Suppose we have obtained a reference light curve by applying
the Savitzky–Golay filter to the raw light curve. Let us denote the
count of the raw data in the ith time bin by Ci, the count given by the
reference light curve by Yi. The total squared deviation of the raw
light curve from the reference light curve is then

∑Nbin
i=1 (Ci − Yi )

2,
where N bin is the total number of bins to be summed. We obtain the
intrinsic squared deviation by subtracting the Poisson noise N Poisson

�C2 = W

Nbin∑
i=1

(Ci − Yi )
2 − NPoisson, (1)

where W ≡ nP/(nP − m − 1) is a statistical weight accounting
for the fact that among the nP data points only nP − m − 1 are
statistically independent. The inclusion of W allows us to apply the
variability definition to any light curve with nP > m + 1.

The summation in equation (1) is from time t1 (corresponding
to i = 1) to time t2 (corresponding to i = N bin), enclosing a major
part of the light curve. Following FR00 and R01, we define t1 to
be the start of T 90, t 2 to be the end of T 90, where T 90 is the time
during which the cumulative counts of the GRB increase from 5 to
95 per cent above background (Kouveliotou et al. 1993).

The Poisson noise is calculated by

NPoisson =
Nbin∑
i=1

[Ci + (ξ − 1)Cbg,i ], (2)

where C bg,i is the background, the factor ξ is the ratio of the back-
ground fluctuation to the Poisson noise of the background (given by
the reduced χ2 of the background fit). For GRBs detected by Swift
we found that ξ is often significantly larger than unity, indicating
that the background fluctuation is quite non-Poissonian.

The variability of the light curve is defined by the normalized
squared deviation. We find that the following definition leads to the
tightest correlation between the variability and the peak luminosity

V = �C2

(Nbin − 1) C2
max

, (3)

where �C2/(N bin − 1) is the average of the squared deviation, Cmax

is the net peak count (i.e. the background is subtracted).
Our variability is defined in the observer’s frame, so that the in-

formation of GRB redshift is not needed. This not only makes the
computation of variability simple, but also eliminates the uncer-
tainty arising from the assumption about the dependence of light-
curve variability on photon energy. The effect of GRB redshift was
considered by R01 and FR00 who defined their variabilities in the
GRB frame, but the dependence of variability on redshift turned out
to be very weak.

As we applied our smoothing procedure to the GRBs in the sample
described in Section 3, we found that the tightest correlation between
the variability and the peak luminosity is obtained if we iteratively
apply the Savitzky–Golay filter N iter times, where N iter is the integer
closest to T 90/Tf (i.e. N iter is roughly the number of moving windows
contained in T 90).

In summary, our definition of variability differs from that of FR00
and R01 in the following aspects: (i) Our variability is defined in

the observer’s frame, while the variabilities of FR00 and R01 are
defined in the frame of the GRB. (ii) We normalize the average
of the squared deviation by the squared peak count (the same as
FR00), while R01 normalize the total squared deviation by the sum
of squared counts. (iii) FR00 and R01 use a linear boxcar filter,
while we use a non-linear Savitzky–Golay filter.

3 D E S C R I P T I O N O F T H E S A M P L E

Our GRB sample contains 19 GRBs from the sample in G05,
and six more GRBs detected by French Gamma Telescope
(FREGATE)/HETE-2 and Burst Alert Telescope (BAT)/Swift. So,
the total number of GRBs in our sample is 25. They are listed in
Table 1, with measured redshift, calculated isotropic-equivalent
peak luminosity, calculated variability, and the number of iterations
in applying the Savitzky–Golay filter. We have chosen to use the
GRBs with data available publicly, which include GRBs detected by
Burst and Transient Source Experiment (BATSE)/Compton Gamma
Ray Observatory (CGRO), HETE-2, and BAT/Swift.1 To obtain a re-
liable calculation of variability, we have only selected GRBs with
more than 30 per cent of total counts above the 3σ of background.
As a result, those GRBs with too low signal-to-noise ratios (S/Ns)
are not included in our sample.

The 19 GRBs from G05 are: 970508, 971214, 980425, 980703,
990123, 990506, 990510, 991216, 000131, 010921, 020124,
020813, 030328, 030329, 041006, 050401, 050505, 050525 and
050603. Their peak luminosities are taken from the same paper.
The rest 13 GRBs in G05 are not included in our sample for vari-
ous reasons: either their data are not publicly available (notably the
seven GRBs detected by BeppoSAX but not by BATSE or HETE-2),
or their data are incomplete or have too low S/Ns. Although 050315
and 050319 in G05 were detected by BAT/Swift, their data were not
available to us when this paper was written, because the archive of
Swift only contained data taken after 2005 April 1.

The six newly added GRBs are 030115a, 030528, 050408 (from
HETE-2), 050802, 050803 and 050820a (from Swift). Their peak
luminosities are calculated in exactly the same way as in R01 and
G05. For GRBs detected by HETE-2, we used the spectral fit pro-
vided by Sakamoto et al. (2005) and the HETE website. For GRBs
detected by Swift, peak spectra are extracted from their event files,
then fitted with a power law which is sufficient for all cases (in the
energy range 15–350 keV).

Although Golenetskii et al. (2005), Pal’shin et al. (2005) and
Cummings et al. (2005) have reported the detection of a second,
larger episode of emission from GRB 050820a (by both Konus/Wind
and BAT/Swift), only the data for the first episode from Swift are
available to us. Thus, for GRB 050820a, the variability and peak
luminosity listed in Table 1 refer to its first episode (of the duration
of ∼30 s).

The time bin of each GRB light curve is as follows. For GRBs
detected by BATSE, except 000131, the time bin is 64 ms. GRB
000131 does not have a 64-ms light curve, so we use its 1.024-s light
curve. Although a bin of 1.024 s is somewhat large, the duration of
000131 is about 100 s which is much larger than its time bin. For
GRBs detected by HETE-2, the time bin is 164 ms. While for GRBs

1 Although the light-curve data of some GRBs detected by Konus/WIND
are available from http://gcn.gsfc.nasa.gov/gcn/konus grbs.html, we have
chosen not to use them since the data are highly incomplete in the part of
pre- and post-burst.
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Table 1. Variability versus peak luminosity for 25 GRBs with known redshift.

GRB za Missionb N iter
c Vd Le z referencesf

970508 0.835 B/BS/U/K 6 0.0018 ± 0.0009 9.43 ± 1.89 (1)
971214 3.418 B/BS/U/K/N/R 4 0.0106 ± 0.0018 360 ± 65 (2)
980425 0.0085 B/BS/U/K 6 0.00041 ± 0.00041 0.0007 ± 0.0002 (3)
980703 0.966 B/BS/U/K/R 4 0.0030 ± 0.0005 26.4 ± 5.6 (4)
990123 1.6004 B/BS/U/K 3 0.0100 ± 0.0017 840 ± 121 (5)
990506 1.3 B/BS/U/K/R 8 0.0083 ± 0.0004 583 ± 121 (6)
990510 1.619 B/BS/U/K/N 12 0.0064 ± 0.0003 300 ± 50 (7)
991216 1.02 B/BS/U/N 4 0.0132 ± 0.0004 1398 ± 200 (8)
000131 4.5 B/U/K/N 8 0.0113 ± 0.0007 3600 ± 900 (9)
010921 0.45 H/BS/U/K 3 0.0020 ± 0.0017 8.0 ± 2.0 (10)
020124 3.198 H/U/K 5 0.0097 ± 0.0045 300 ± 60 (11)
020813 1.25 H/U/K/O 5 0.0100 ± 0.0013 340 ± 70 (12)
030115a 2.2 H 12 0.0057 ± 0.0036 57.0 ± 8.0 (13)
030328 1.52 H/U/K 3 0.0043 ± 0.0015 90 ± 18 (14)
030329 0.168 H/U/K/O/RH 4 0.0070 ± 0.0010 6.1 ± 1.2 (15)
030528 0.782 H 4 0.0018 ± 0.0023 1.4 ± 0.5 (16)
041006 0.712 H/K/RH 6 0.0037 ± 0.0008 66 ± 10 (17)
050401 2.90 BSw 7 0.0120 ± 0.0022 740 ± 100 (18)
050408 1.2357 H 9 0.0072 ± 0.0033 148 ± 67 (19)
050505 4.27 BSw 8 0.0090 ± 0.0051 250 ± 50 (20)
050525 0.606 BSw 3 0.0071 ± 0.0012 80 ± 10 (21)
050603 2.821 BSw 6 0.0100 ± 0.0006 1200 ± 200 (22)
050802 1.71 BSw 3 0.0042 ± 0.0038 104 ± 23 (23)
050803 0.422 BSw 6 0.0026 ± 0.0009 2.4 ± 0.6 (24)
050820a 2.612 BSw 5 0.0058 ± 0.0038 63 ± 13 (25)

aMeasured redshift. bMission: B (BATSE/CGRO), H (HETE-2), BS (BeppoSAX), K (Konus/WIND), BSw (BAT/Swift), U (Ulysses), S (SROSS-C), N (NEAR),
R (RossiXTE), O (Mars Odyssey), RH (RHESSI): the data used are taken from the first mission mentioned.
cNumber of iterations in applying the Savitzky–Golay filter (see Section 2). dCalculated variability (equation 3) and error. eIsotropic-equivalent peak
luminosity in 1050 erg s−1 in the rest-frame 100–1000 keV band, for peak fluxes measured on a 1-s time-scale (H 0 = 65 km s−1 Mpc−1, �m = 0.3, and
�� = 0.7). f References for the redshift measurements: (1) Metzger et al. (1997), (2) Kulkarni et al. (1998), (3) Tinney et al. (1998), (4) Djorgovski et al.
(1998), (5) Kulkarni et al. (1999), (6) Bloom et al. (2003), (7) Beuermann et al. (1999), (8) Vreeswijk et al. (1999), (9) Andersen et al. (2000), (10) Djorgovski
et al. (2001), (11) Hjorth et al. (2003a), (12) Price et al. (2002), (13) http://space.mit.edu/HETE/Bursts/Data/ and Smith et al. (2005), (14) Martini, Garnavich
& Stanek (2003), (15) Greiner et al. (2003), (16) Rau, Salvato & Greiner (2005), (17) Fugazza et al. (2004), (18) Fynbo et al. (2005a), (19) Berger, Gladders
& Oemler (2005a) and Prochaska et al. (2005a), (20) Berger et al. (2005b), (21) Foley et al. (2005), (22) Berger & Becker (2005), (23) Fynbo et al. (2005b),
(24) Bloom et al. (2005), (25) Prochaska et al. (2005b) and Ledoux et al. (2005).

detected by BAT/Swift, we extract 64-ms light curves from their
event files available in the public data archive.

As we analyse the GRB light curves we use the total counts
in the energy range specified as follows: 25–300 keV for GRBs
detected by BATSE, 30–400 keV for those detected by HETE-2 and
25–350 keV for those detected by BAT/Swift. We have tried to make
the range of energy for GRBs detected by different instruments to
have largest overlap.

Finally, we remark that for the GRBs detected by BATSE, the
light-curve data in the pre- and post-burst sections were divided
equally into 64-ms time bins from their original 1.024-s time bins.
When we calculate the Poisson noise in those sections, we multiply
the result by a factor of 0.0625 (= 0.064/1.024) to take into account
the reduction in the Poisson noise arising from the change in time
bin.

4 R E S U LT S

We have applied the smoothing procedure described in Section 2
to our GRB sample. The obtained variabilities and errors, as well
as the number of iterations in applying the Savitzky–Golay filter,
are listed in Table 1. The errors of variability are principally caused
by photon noises. However, the uncertainties arising from changing
N iter (see Section 2) by ±1 are also taken into account: we find the

changes in the variability for N iter ± 1 and add in quadrature the
maximum to the statistical error.

The peak luminosity versus variability is shown in Fig. 1. Clearly,
a very tight correlation between the two quantities exists, with only
one prominent outlier: GRB 030329. Given the large error in its
variability, it is unclear if GRB 980425 – which is famous for its
smallest redshift, lowest peak luminosity and least total energy, and
association with SN 1998bw (Galama et al. 1998) – is off trend
as in other kind of correlations (e.g. the total energy–peak energy
correlation). In fact, the error in variability is larger than or about
the same value as the variability itself for 980425 and 030528 (see
Table 1).

We have made a least-χ2 linear fit to log L–log V , where L is the
peak luminosity in erg s−1. To take into account both the errors in
L and V , we have made use of the program FITEXY in Press et al.
(2002). The asymmetric errors in log L and log V are averaged. That
is, we take

σlog q = 1

2
[log(q + σq ) − log(q − σq )], (4)

where q = L or V . Since the errors in log V are infinite for 980425
and 030528, these two GRBs do not contribute to the total χ2. GRB
030329 was not considered due to its large offset. With 980425,
030329 and 030528 excluded, the total number of GRBs in the final
sample to fit is 22. We have obtained the following result (the solid
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Figure 1. Peak luminosity versus variability of 25 GRBs. The solid straight
line is the least-χ2 linear fit to the data, with GRBs 980425, 030329 and
030528 excluded (see the text): log L = 3.25 log V + 59.42 (L in units of
erg s−1). The χ2/d.o.f. = 38.58/20 = 1.93. The two dashed lines mark the
1σ deviation of the fit. (Filled circles: GRBs detected by BATSE; squares:
GRBs detected by HETE-2; triangles: GRBs detected by BAT/Swift.)

straight line in Fig. 1)

log L = a log V + b, (5)

where

a = 3.25 ± 0.26, b = 59.42 ± 0.53. (6)

The reduced chi-square χ2
r ≡ χ 2/d.o.f. = 1.93, where the de-

grees of freedom (d.o.f.) = 22 − 2 = 20. The smallness of χ 2
r in-

dicates a very tight correlation between the peak luminosity and
variability, for details see Section 5.

The two dashed lines in Fig. 1 mark the 1σ width of the fit,
measuring the scatter of data and defined by the deviation of fit (see
Section 5). However, this should not be mixed with the error in the
predicted log L, which we discuss below.

In Fig. 2, we plot the confidence intervals in the a–b plane. The
best-fitting values of a and b, which correspond to the minimum of
χ 2, are indicated by the cross sign in the figure. The three con-
tours enclose the regions containing, respectively, 68.3, 90 and
95.4 per cent of normally distributed data. The highly elongated
shape of the contours indicates that a and b are highly correlated.

For any measured value of log V , equation (5) predicts a value of
log L. The error in the predicted log L comes from two sources: the
error in log V and the uncertainties in a and b

σlog L =
√

a2σ 2
log V + σ 2

ab. (7)

Generally, the errors are asymmetric in the upward and down-
ward directions. Let us denote σ ab,1 and σ ab,2 as upward error and
downward error, respectively, due to uncertainties in a and b. That
is, the predicted log luminosity is log L

+σab,1
−σab,2

, if σ log V = 0. In Fig. 3,
we show the numerically calculated values of σ ab,1 (filled circles)
and σ ab,2 (open circles) versus the predicted log luminosity. From
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Figure 2. The confidence intervals in the a–b space. The cross sign denotes
the values of a and b at the minimum of χ2 (a = 3.25, b = 59.42 and χ2

= 38.58). The contours correspond to the increase in χ2, �χ2 = 2.30, 4.61
and 6.17, respectively. The region enclosed by each contour contains 68.3,
90 and 95.4 per cent of normally distributed data.

Fig. 2, we find that δb ∼ 2.05 δa when δa and δb are not close to
zero, which leads to σ ab ∼ (log V + 2.05) δa. Thus, σ ab is mini-
mized at log V ≈ −2.05, that is, at log L ≈ 52.8, consistent with the
numerical results.

For the convenience of application of the log L–log V relation (5)
to the prediction of GRB’s peak luminosity, we have attempted to
approximate the numerical results for σ ab by several analytic for-
mulae. The results are summarized in Appendix A, and represented
by the solid lines in Fig. 3.

Now we apply the above results to GRB 030329 to check how
far it deviates from the log L–log V relation. From Table 1, for
GRB 030329 we have V = 0.0070 and σ V = 0.0010. Submitting
log V = −2.15 into equation (5), we obtain a predicted log

46 48 50 52 54 56
0
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0.8

Figure 3. The error in the log L predicted by equation (5), due to the
uncertainties in a and b. Filled circles are numerical solutions for the upward
error (σ ab,1). Open circles are numerical solutions for the downward error
(σ ab,2). Solid lines are analytical approximations to the numerical solutions
given by equations (A1)–(A6).
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luminosity for GRB 030329: log L = 52.4. Since GRB 030329
lies below the straight line in Fig. 1, the relevant error in the pre-
dicted log luminosity is determined by σ ab,2 and σ log V = log V −
log (V − σ V ) ≈ 0.067. By equation (A4) we have σ ab,2 ≈ 0.08.
Then, by equation (7), the total error in the predicted luminosity
is σ log L ≈ 0.23. From Table 1, the measured luminosity of GRB
030329 is log L ≈ 50.8, with an upward measured error σ log L ≈
0.08 that is smaller than the error in the predicted log luminosity.
So, GRB 030329 deviates from the correlation (the straight line in
Fig. 1) by (52.4 − 50.8)/0.23 ≈ 7σ .

5 C O M PA R I S O N TO G U I D O R Z I E T A L . ’ S
R E S U LT S

To make a quantitative comparison of our results to that of G05,
we need a parameter that measures the scatter of data points around
the best-fitting model. The parameter should not be sensitive to the
variation in data errors caused by different definitions of variabil-
ity. Reichart (2001) has provided such a parameter based on the
maximum-likelihood method, which is called the ‘sample variance’
or ‘slop’. However, here we choose to use the ‘variance of fit’ de-
fined with the approach of least-χ 2 (Bevington & Robinson 1992),
which is much less sophisticated but enough for our current purpose.

Suppose a data set {xi, yi}, with errors {σ x,i , σ y,i}, is fitted by a
model y = f (x). The fit minimizes the χ 2 defined by

χ 2 ≡
N∑

i=1

1

σ 2
i

[yi − f (xi )]
2, (8)

where N is the total number of data points, and

σ 2
i = σ 2

y,i +
(

d f

dx

)2

x=xi

σ 2
x,i . (9)

The reduced χ 2, that is, the χ2 per d.o.f., is

χ 2
r = χ2/d.o.f. = χ2/(N − p), (10)

where p is the number of parameters in the function f (x).
The variance of the fit, measured along the y-direction, is defined

by (Bevington & Robinson 1992)

s2
y ≡

〈
σ 2

i

〉
N − p

N∑
i=1

1

σ 2
i

[yi − f (xi )]
2 , (11)

where 〈σ 2
i 〉 is the weighted average of the individual data variance

〈σ 2
i 〉 ≡

(
1

N

N∑
i=1

1

σ 2
i

)−1

. (12)

The variance of fit measures the spread of data around the model.
We denote the variance of fit by s2 (then s is the deviation of fit), to
distinguish it from the data variance σ 2 which represents the error
in the measurement of each data point.

The appearance of 〈σ 2
i 〉 in the numerator and σ 2

i in the denomi-
nator in equation (11) shows that the variance of fit is not sensitive
to the variation in data variance.

By the definition of χ2
r , equation (11) can be recast into a simpler

form

s2
y = 〈

σ 2
i

〉
χ 2

r . (13)

Figure 4. Definition of the variance of fit. The thick solid curve is the fit y =
f (x). The y-component of the variance of fit, s2

y , is defined by equation (11).
The two dashed curves, called ‘the 1σ width’ of y = f (x), are defined by
y = f (x) ± sy. The x-component of the variance of fit, s2

x , is related to s2
y

by equation (14). The scatter of data points around y = f (x) is measured by
s = sx sy/

√
s2

x + s2
y , the length of the straight line OC that is perpendicular

to the straight line AB. [The straight line AB locally approximates the curve
y = f (x) when sy is sufficiently small or the curvature of the curve is
negligible.]

We define the variance of the fit measured along the x-direction
by

s2
x = s2

y

(
d f

dx

)−2

, (14)

where d f /d x is the slope of the curve y = f (x). Note, by definitions,
sy is always a constant, but sx is a function of x unless f (x) is a linear
function of x.

We measure the scatter of data points around the curve y = f (x)
by the variance of fit along a direction locally perpendicular to the
curve, which is (see Fig. 4)

s2 = s2
x s2

y

s2
x + s2

y

= s2
y

1 + (d f /dx)2
. (15)

For the problem in this paper, we have x = log V , y = log L and
f (x) = a x + b. Thus, d f /dx = a is a constant, and sx = sy/a, σ 2

i =
σ 2

y,i + a2 σ 2
x,i . The deviation of fit is then

s = sy√
1 + a2

. (16)

With the above tools, we are ready to compare our results to
that of G05 quantitatively. To make the comparison well defined,
we analyse the overlapping sample which contains 19 GRBs (see
Section 3). In Fig. 5, we plot the variability with our definition versus
that with the R01’s definition (the latter has been copied from G05).
The two variabilities are highly correlated, but the scatter is large.
This large scatter is necessary for obtaining a better correlation
between the peak luminosity and the variability of GRBs.

The largest scatter in Fig. 5 occurs at GRB 980425, for which
our background fit leads to T 90 = 60.29 s, in contrast to the
34.88 s reported in the BATSE web page. If we adopted T 90 =
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Figure 5. The variability with our definition versus the variability with def-
inition of R01 for 19 GRBs. The straight line is defined by the equation ‘our
variability = variability of R01 divided by 15’.

34.88 and ξ = 1 (ξ is the ratio of the background fluctuation to
the Poisson noise; see Section 2), we would obtain V = 0.00053 ±
0.00057 for 980425. This value of V is only slightly larger than that
listed in Table 1, so 980425 remains to have the largest scatter in
Fig. 5. With our definition of variability, GRB 980425 is much less
offset from the variability–luminosity correlation.

Fig. 5 also shows that the values of the variability with our def-
inition are systematically smaller than that with the definition of
R01, as indicated by the straight line defined by ‘our variability =
R01’s variability divided by 15’. This is mainly caused by the differ-
ent normalization in the two definitions. In addition, our variability
generally has a larger error bar than that of R01, caused by the
fact that we normalize our variability by peak count, which suffers
larger photon noise than total counts; and we have considered the
error arising from changing N iter by ±1.

Now, we make a linear fit to log L–log V for the overlapping
sample, with our definition of variability. For the reasons explained
in Section 4, we exclude GRBs 980425 and 030329 during the
fit. Thus, the total number of GRBs to fit is N = 17. We obtain
log L = 3.10 log V + 59.13, and χ 2/d.o.f. = 2.43 where d.o.f. =
15. The weighted average of the individual data variance is 〈σ 2

i 〉 =
0.02715. Thus, for the fit with our definition of variability, we have
sy = 0.257, sx = 0.0829 and s = 0.079.

Next, we make a linear fit to log L–log V for the overlapping sam-
ple, with R01’ definition of variability. Again, GRBs 980425 and
030329 are excluded, to make the GRB members in the sample re-
main the same. We obtain log L = 1.77 log V + 54.06, and χ2/d.o.f.
= 19.89. The weighted average of the individual data variance is
〈σ 2

i 〉 = 0.009240. Thus, for the fit with R01’s definition of variabil-
ity, we have sy = 0.429, sx = 0.2417 and s = 0.211.

The scatter of data points around the fitted log L–log V is mea-
sured by s. Thus, according to the above numbers, for the overlap-
ping sample the scatter in our log L–log V relation is smaller than
that of G05 by a factor of 0.211/0.079 = 2.7, although the weighted
average of the individual data error (≡ 〈σ 2

i 〉1/2) with our definition

-1.5 -1 -0.5

51

52

53

54

Figure 6. Comparison of our results (filled circles and thick lines) to that
of G05 (open circles and thin lines). Straight lines represent the least-χ2 fit
and the 1σ width. (Our variability has been multiplied by a factor of 15.)

of variability is larger than that with R01’s definition of variability
by a factor of (0.02715/0.009240)1/2 = 1.7.

The above results, for the overlapping sample excluding 980425
and 030329, are summarized in Fig. 6, where filled circles and thick
lines represent the results with our data, open circles and thin lines
represent the results with G05’s data. The luminosities in the two
set of data are the same, so each GRB is represented by a horizontal
line in Fig. 6. However, the variabilities in the two set of data differ,
so we see the offset along the horizontal direction of each pair of
filled circle–open circle. The solid straight lines are least-χ2 fits to
each data set, and the dashed straight lines mark the ‘1σ width’ of
the fits. We have set the unitary length of the horizontal and vertical
axes to be the same, so that for each data set s is just the half-width
of the region bounded by the two dashed lines that you see. The
figure clearly shows that the scatter of our data set is much narrower
than that of G05’s data set.

With the above defined scatter parameter s, we can also check
how sensitive our results are to the parameters in our definition
of variability. As mentioned in Section 2, we have chosen Tf =
T 0.5, and N iter to be the integer closest to the ratio T 90/Tf . With
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Figure 7. Variation of the deviation of the linear fit to log L–log V , with
respect to the choice of N iter. The parameterα, which the T 0.5 in the definition
of N iter is multiplied by, is set to be the same for all GRBs in the sample.
The variabilities presented in this paper correspond to the case α = 1.

this choice, for the GRB sample described in Section 3 (excluding
980425, 030329 and 030528), we obtained χ2/d.o.f. = 1.93 and
s = 0.078 (Fig. 1, where the two dashed lines are obtained by shifting
the solid line upward/downward by sy = 0.265). If we follow R01
and G04 to choose Tf = T 0.45, we would obtain χ2/d.o.f. = 2.53
and s = 0.087 in the linear fit to log L–log V . A slightly larger value
of s indicates that the correlation is slightly looser.

To test how sensitive the results are to the choice of N iter, let
us redefine N iter by the integer closest to T 90/αT 0.5, where α is a
parameter that is set to be the same for all GRBs in the sample.
When α = 1, we return to the definition that we have adopted. We
now let α vary from 0.2 to 2, and calculate the corresponding s in the
least-χ2 fit to log L–log V . The calculated s versus α are presented
in Fig. 7, which shows that the results are stable to the choice of
N iter. That is, the variance of fit does not change drastically with a
small change in α. The figure also shows that α = 1 is around the
minimum of s(α).

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a new definition for the variability of GRB light
curves. The new variability is defined in the observer’s frame, and the
light curve is smoothed with the Savitzky–Golay filter. The former
makes it easy to apply the procedure to all GRBs with well-measured
light curves (i.e. with a significant S/N, and a reasonable size of
time bin – neither too large to erase the variability on short time-
scales, nor too small to introduce too large Poisson noises), without
referring to the redshift information.

We have applied our smoothing procedure to a sample of 25
long-duration GRBs with measured redshifts and publicly available
data. A very tight correlation between the variability and the peak
luminosity is found, with only one prominent outlier: GRB 030329.
Excluding 030329, 980425 and 030528 (the latter two are due to

their too large errors in variability), a linear fit to the log of variability
and the log of peak luminosity is obtained (equations 5 and 6), with
χ2/d.o.f. = 1.93. The smallness of the reduced χ2 indicates that the
data scatter is very small (Figs 1 and 6).

We note that, although the existence of a second, larger episode
of emission from GRB 050820a has been claimed (Cummings et al.
2005; Golenetskii et al. 2005; Pal’shin et al. 2005) and we have
only made use of the data for its first episode, GRB 050820a fits the
relation perfectly well.

Our results are a significant improvement to that of G05 (as well
as that of FR00 and R01), who used a different definition of variabil-
ity and obtained χ 2/d.o.f. = 1167/30 = 38.9. An analysis on the
overlapping sample of 17 GRBs (after GRBs 980425 and 030329
being excluded) shows that the scatter in our data is smaller than
that in the G05’s data by a factor of 2.7, measured by the deviation
of fit (Section 5).

The improvement to the correlation is caused by using a new
smoothing procedure and a different normalization in the definition
of our variability, not by neglecting the effect of GRB redshift. R01
have shown that the dependence of variability on the redshift is
extremely weak. The fact that a very tight correlation between the
peak luminosity and the variability is obtained without including
the corrections to the variability from the GRB redshift also leads
us to believe that such corrections are not necessary.

A remarkable feature of the correlation that we have found is
that it does not rely on the corrections to the luminosity from the
collimation of GRB jets. In other words, the peak luminosity used
above is simply the isotropic-equivalent peak luminosity. If this
correlation is confirmed by future bursts, it will provide a convenient
calibration to GRB luminosity and distance.

GRB 030329, which is considered to be a firm case for the con-
nection of GRBs with supernovae (Hjorth et al. 2003b; Stanek et al.
2003), is offset from the correlation by 7σ (Fig. 1). Although the
cause is not clear, we have noted that 030329 and 050525 differ from
other GRBs in the sample in the following way: their light curves
consist of two distinctly separated pulses with each containing at
least 30 per cent of total counts. Motivated by this observation and
the fact that GRB 050820a fits the relation well although only the
first episode of its emission has been used, we have recalculated
the variabilities of 030329 and 050525 by dividing the smoothing
window by a factor of 2 (i.e. dividing the nP obtained from T 0.5 by
2) but keeping N iter unchanged.2 We obtained V = 0.0022 ± 0.0003
for 030329, which well fits the solid straight line in Fig. 1. For
050525, we obtained V = 0.0032 ± 0.0007, which fits the straight
line equally well as the value listed in Table 1. Whether this treat-
ment is correct must be tested when more GRBs with light curves
similar to that of 030329 and 050525 are available.
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A P P E N D I X A : A NA LY T I C A P P ROX I M AT I O N
TO T H E E R RO R I N T H E L O G L U M I N O S I T Y

The numerical results for the error in the log L predicted by equa-
tion (5) due to the uncertainties in a and b, σ ab, can be approximated
by the following formulae (σ ab,1 for the upward error, σ ab,2 for the
downward error):

(1) When log L < 52

σab,1 ≈ 7.2017 − 0.167 77x + 0.000 6006x2, (A1)

σab,2 ≈ 8.0929 − 0.180 00x + 0.000 5134x2, (A2)

where x ≡ log L, L is in units of erg s−1. (2) When 52 � log L < 54

σab,1 ≈ 2274.034 248 − 124.984 716x + 2.286 986x2

−0.013 930 421x3, (A3)

σab,2 ≈ 3028.186 992 − 167.524 125x + 3.087 093x2

−0.018 948 436x3. (A4)

(3) When log L � 54

σab,1 ≈ −6.8502 + 0.129 89x, (A5)

σab,2 ≈ −5.7594 + 0.109 33x . (A6)

The fractional errors in σ ab given by these formulae are always
<5 per cent.
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